

Apples and Automobiles: a decision process for an exoplanet direct detection mission (XDM)

Charley Noecker

Choosing XDM in 2015 will be unwieldy

Decision must fold together judgments on... despite..

judgments on	despite
Science capability	incomplete knowledge of zodis and η_\oplus factors of 2 in observatory size and capability
Technology readiness	inadequate and unequal technology development
Technology risk	wild guesses about how easily the remaining technology concerns will be addressed
Cost and cost risk	cost estimates (notoriously uncertain & variable) wild guesses about how much those costs may rise

It seems crazy to make such a big decision with so much uncertainty

But we have only one bold shot at this mission

Must make the best decision we can

Taming the Hydra

We need a formal decision process

- It must be interdisciplinary
- It must organize multiple heterogeneous considerations, factual and subjective
- It must guide the mission concept studies (set the stage for valid comparisons) and incorporate their results
- It must handle both hard and soft regts
- It must document the justification for the final choice
- It should be collaborative
 - Ensure the decision has multiple "parents" representing various communities
 - Discourage domination by one person (before the end)
- IT MUST BE FINAL

KT table formulation process Senior Review Panel process

NASA selection official

Kepner-Tregoe decision methods

- Developed for managers of all kinds, confronting decisions of all kinds
- Transferred into engineering and adapted for complex decisions
- Used for TPF-I and other JPL programs
- Organizes the entire decision process
 - Explicit, precise declaration of the question
 - Formulation of the candidates for selection
 - Development of criteria and weighting factors
 - Scoring and combination of multiple scores
 - Group dynamics for multiple participants
 - Decision table is largely self-documenting
- This process will be inherently subjective and social, but it encourages crisp thinking and discussion
- The least terrible of all possible decision methods: because it occurs openly, in a public document, in collaboration

Introduction to the KT decision table

Introduction to the KT decision table

- Every detail on this page is an <u>example</u> or <u>notional starting point</u> for <u>discussion</u>
- · Decision statement

	OPTIONS	Option		Option		Option		Option		Option		Option	
IST CRITERIA	+	1		2		3		4		5		6	
	\vdash	4m + Lyot coronagraph	data	4m + PIAA	data	4m + VNC	data	4m + starshade	data	8m seg + VNC	data	8m seg + Starshade	
MUSTS		1											
Optical A FOV > TBD		1		**		> -		> -		**		3- 1	
RSF width < (TBD)			$\overline{}$	**									
Examine >20 cumulative HZs with TXP sensitivity		3- -				**						**	
Cost < TBD		>-		1		> -		> -		**		**	
Compatible with a launch vehicle		3-1		-		3- -		3- -		3		3- -	
Compatible with int'l collaboration		-		**		-		-				-	
DISCRIMINATORS	WEIGHT												

(1) DECISION STATEMENT: Choose a mission architecture for exoplanet direct detection and UVOIR astronomy in 2025-2030

Option 1		Option 2		Option 3		Option 4		Option 5		Option 6	
4m + Lyot coronagraph	data	4m + PIAA	data	4m + VNC	data	4m + starshade	data	8m seg +	doto	8m seg +	data

- Weights (importance)
- Metrics, scores, and weighted total
- Other constraints
 - European interest?
 - Strategic issues?
- Final recommendation

Introduction to the KT decision

- Every detail on this page is an <u>example</u> or <u>notional starting point</u> for discussion
- Decision statement
- Options (observatories)
- Musts (pass/fail)
- Discriminators (better/worse)
- Weights (importance)
- Metrics, scores, and weighted total
- Other constraints
 - European interest?
 - Strategic issues?
- Final recommendation

DISCRIMINATORS

WEIGHT

Introduction to the KT decision table

- Every detail on this page is an <u>example</u> or <u>notional starting point</u> for discussion
- Decision statement
- Options (observatories)
- Musts (pass/fail)
- Discriminators (better/worse)
- Weights (importance)
- Metrics, scores, and weighted total
- Other constraints

(5) CALCULATE HIGHEST WEIGHTED SCORE

(1) DECISION STATEMENT: Chaose a mission architecture for exoplanet direct detection and LIVOR astronomy in 2025-203(

· Final recommendation

Funancan interest?

0

47

Options

- Each "Option" is mission concept —an assembly of characteristics chosen by the community, especially its advocates
 - Internal or external occulter, IWA, telescope size, obscuration, stability, other requirements
- Community must choose a fair organizing principle for generating combinations of these characteristics & designating them as Options
 - e.g. a 4m and an 8m telescope for internal/external occulters, or science benchmarks, or cost benchmarks
- More Options is better at first; premature or haphazard whittling causes unfairness
- List must be whittled to ~4 before SWGs undertake detailed studies
 - e.g. small and large for each type of planet-finder
 - Naturally should be done by advocates in a way that ensures fairness compared to other Options

Discriminators, weights, and scores

- Discriminators are key differences that are important to the mission
 - A place to give credit for an advantage, or subtract for a disadvantage
 - List should include anything that could have an impact on mission success
 - Should be linked to well-defined metrics as much as possible
- Weights are a judgment of their relative importance
 - Developed by debate among the community (ExoPAG, COPAG, et. al.)
 - "Where the rubber hits the road" this will dominate the decision, and guide the efforts of SWGs in tailoring their concepts
 - Overlap and duplication among Discriminators gives hidden extra weighting (to be avoided)
- Scores are the judgments of relative merit w.r.t. those metrics
 - For simplicity, usually an integer between -2 and +2
 - Related monotonically to metric values by an agreed lookup table <u>for each</u> discriminator
 - First "Option" is the reference, and thus assigned all zeros
- Weighted total is usually sum(weight*score) down each column

The End Game

- There is a temptation to "game the system" at the end adjust scores and weights to turn an opinion into a decision
- Normally, this is explicitly acknowledged and even <u>encouraged</u>
 - The results of evaluating metrics and tallying scores will teach you about the Options and their strengths and weaknesses
 - Participants in the decision aim to arrive at a consensus: everyone understands why the selected Option is winning, and everyone accepts the reasoning
 - Adjustments allow an exploration of the sensitivity to minor tweaks
- In this case, we probably do not allow this much freedom in the end
 - Advocates for one Option may want to change their minds about the ground rules when they see the outcome
 - Senior Panel members may not have the standing (depth of knowledge or technical authority) to countermand the judgment of the community
 - Instead just report on sensitivity to assumptions and tweaks

Who does what

- The community (us) will set up the decision
 - Defining Options
 - Defining Musts and Discriminators, assigning weights
- The Senior Review panel will execute the decision
 - Assembling metric values
 - Assigning scores to go with those values
 - Iterating scores to distill a decision from the mud
 - Adjusting weights only with concurrence from HQ and key members of the community (us)
- NASA official reviews the recommendation and decides

The Final Risk

- After the decision is made in 2015, we still must make the observatory look easy by 2020
 - There is no guarantee that any decision (by any process) will yield a workable mission concept
- We must aim for the most <u>robust</u> choice in 2015, not necessarily the <u>best</u>
- My main concerns with the plan are
 - that we won't have enough time and money to get the most important answers to make a robust choice
 - that there will be a gap of 3+ years in technology development during the decision period 2014-16

